Fourier series - THEORY

Dirichlet conditions

It is said that the function $\mathrm{f}(\mathrm{x})$ meets Dirichlet conditions in the interval (a, b) if
i) uniformly limited, that is $|f(x)| \leq M$ for each $x \in(a, b)$, where M is constant
(If it is limited in the interval (a, b) or the final at all points of the interval)
ii) there are no more than a finite number of break points and they are all first-order, that is, at any ends point there are finite left and right limit
(If the interval is continuous or has a finite number of ends of the first kind, the so-called "jumping")

iii) there are no more than a finite number of real extremum

(If in a given interval monotone or has a finite number of extremum)

Dirichlet theorem

Let $f(x) \in X^{`}, X^{`}=\{f \in X / f$ have adequate one - sided derivatives on $[-\pi, \pi]$.
Fourier series of $f(x)$ converges to values:

$$
\frac{f(x-0)+f(x+0)}{2}
$$

and in points $x= \pm \pi$ converges to :

$$
\frac{f(\pi-0)+f(-\pi+0)}{2}
$$

For example, if we take points b and c as interruption points of the first kind, Fourier series has sum:
$S=\frac{f(b-0)+f(b+0)}{2}$ or $S=\frac{f(c-0)+f(c+0)}{2}$
For example, if we have interval $[m, n]$, at the ends of the interval, the sum of Fourier series is $S=\frac{f(m)+f(n)}{2}$

How to developed function in Fourier series?
In the lectures, professors usually explain this over the function $f(x)$ given in the interval $[-\pi, \pi]$, which is periodically extended with period 2π.

Fourier series have form:
$f(x)=\frac{1}{2} a_{0}+\sum_{n=1}^{\infty}\left(a_{n} \cos n x+b_{n} \sin n x\right)$
a_{0}, a_{n}, b_{n} are Fourier coefficients, which we just look over the formula

1) If we are given the interval $[-\pi, \pi]$
i) If the function is neither even nor odd, then:
$a_{0}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) d x$
$a_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos n x d x$
$b_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin n x d x$
$f(x)=\frac{1}{2} a_{0}+\sum_{n=1}^{\infty}\left(a_{n} \cos n x+b_{n} \sin n x\right)$
ii) If on the interval $[-\pi, \pi]$ function is odd, then:
$b_{n}=\frac{2}{\pi} \int_{0}^{\pi} f(x) \sin n x d x \quad$ where are $a_{0}=0 \wedge a_{n}=0$
$f(x)=\sum_{n=1}^{\infty} b_{n} \sin n x$
iii) If on the interval $[-\pi, \pi]$ function is even, then:
$a_{0}=\frac{2}{\pi} \int_{0}^{\pi} f(x) d x$
$a_{n}=\frac{2}{\pi} \int_{0}^{\pi} f(x) \cos n x d x \quad$ while $\quad b_{n}=0$
$f(x)=\frac{1}{2} a_{0}+\sum_{n=1}^{\infty} a_{n} \cos n x$

2) If we are given the interval [$-l, l]$

$a_{0}=\frac{1}{l} \int_{-l}^{l} f(x) d x$
$a_{n}=\frac{1}{l} \int_{-l}^{l} f(x) \cos \frac{n \pi x}{l} d x$
$b_{n}=\frac{1}{l} \int_{-l}^{l} f(x) \sin \frac{n \pi x}{l} d x$
$f(x)=\frac{1}{2} a_{0}+\sum_{n=1}^{\infty}\left(a_{n} \cos \frac{n \pi x}{l}+b_{n} \sin \frac{n \pi x}{l}\right)$

3) If the function is given in an arbitrary interval $[a, b]$

$a_{0}=\frac{2}{b-a} \int_{a}^{b} f(x) d x$
$a_{n}=\frac{2}{b-a} \int_{a}^{b} f(x) \cos \frac{2 n \pi x}{b-a} d x$
$b_{n}=\frac{2}{b-a} \int_{a}^{b} f(x) \sin \frac{2 n \pi x}{b-a} d x$
$f(x)=\frac{1}{2} a_{0}+\sum_{n=1}^{\infty}\left(a_{n} \cos \frac{2 n \pi x}{b-a}+b_{n} \sin \frac{2 n \pi x}{b-a}\right)$

The task will often fall some of the following integral, so that would not be tortured:

$$
\begin{aligned}
& \int_{-\pi}^{\pi} \sin n x d x=0 ; \quad \int_{-\pi}^{\pi} \cos n x d x=0 ; \quad \int_{-\pi}^{\pi} \cos n x \sin n x d x=0 ; \int_{-\pi}^{\pi} \cos n x \cos m x d x=0 \\
& \int_{-\pi}^{\pi} \sin n x \sin m x d x=0 ; \quad \int_{-\pi}^{\pi} \cos ^{2} n x d x=\pi ; \quad \int_{-\pi}^{\pi} \sin ^{2} n x d x=\pi
\end{aligned}
$$

In all of these integrals is, of course $m \neq n$

